Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Drug Discov Today ; 28(8): 103663, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20239119

ABSTRACT

The novel coronavirus crisis caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was a global pandemic. Although various therapeutic approaches were developed over the past 2 years, novel strategies with more efficient applicability are required to target new variants. Aptamers are single-stranded (ss)RNA or DNA oligonucleotides capable of folding into unique 3D structures with robust binding affinity to a wide variety of targets following structural recognition. Aptamer-based theranostics have proven excellent capability for diagnosing and treating various viral infections. Herein, we review the current status and future perspective of the potential of aptamers as COVID-19 therapies.

2.
IUBMB Life ; 2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2287693

ABSTRACT

The ongoing pandemic of COVID-19 is intrinsically a systemic inflammatory disorder; hence, those patients suffering an underlying chronic inflammatory disease such as diabetes mellitus are at high risk of severe complications. Preventing or suppressing the inflammatory responses are of importance in diabetic patients. Sodium-glucose cotransporters-2 inhibitors (SGLT2i) are a newly introduced anti-diabetic drugs that have hypoglycemic effects through the urinary excretion of glucose. They also have an anti-inflammatory potential in diabetes patients, in addition to improving glycemic control, and while there is no direct data available in diabetic patients with COVID-19 disease, there is evidence that suggests that SGLT2i can reduce systemic inflammation and diminish the cytokine storm effect via several cellular mechanisms. In the current review, our aim was to classify and describe the molecular and cellular pathways by which SGLT2i have anti-inflammatory effects in diabetic patients with COVID-19 disease.

3.
Process Biochem ; 118: 154-170, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2277888

ABSTRACT

Cases of deaths due to COVID-19 (COrona VIrus Disease-19) infection are increasing gradually worldwide. Immense research is ongoing to control this pandemic condition. Continual research outcomes are indicating that therapeutic and prophylactic agents are the possible hope to prevent the pandemic from spreading and to combat this increasing death count. Experience gained from previous coronavirus infections (eg., SARS (Severe Acute Respiratory Syndrome), MERS (Middle Ease Respiratory Syndrome), accumulated clinical knowledge during this pandemic, and research helped to identify a few therapeutic agents for emergency treatment of COVID-19. Thereby, monoclonal antibodies, antivirals, broad-spectrum antimicrobials, immunomodulators, and supplements are being suggested for treatment depending on the stage of the disease. These recommended treatments are authorized under medical supervision in emergency conditions only. Urgent need to control the pandemic condition had resulted in various approaches of repurposing the existing drugs, However, poorly designed clinical trials and associated outcomes do not provide enough evidence to fully approve treatments against COVID-19. So far, World Health Organization (WHO) authorized three vaccines as prophylactic against SARS-CoV-2. Here, we discussed about various therapeutic agents, their clinical trials, and limitations of trials for the management of COVID-19. Further, we have also spotlighted different vaccines in research in combating COVID-19.

4.
Inflammopharmacology ; 30(5): 1541-1553, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1959035

ABSTRACT

The emergence of pathogenic viruses is a worldwide frequent cause of diseases and, therefore, the design of treatments for viral infections stands as a significant research topic. Despite many efforts, the production of vaccines is faced with many obstacles and the high rate of viral resistance caused a severe reduction in the efficacy of antiviral drugs. However, the attempt of developing novel natural drugs, as well as the exertion of medicinal plants, may be an applicable solution for the treatment of viral diseases. Boswellia species exhibited a wide range of pharmacological activities in various conditions such as bronchial asthma, rheumatism, and Crohn's illness. Additionally, pharmacological studies reported the observance of practical antiviral activities from different parts of this substance, especially the oleo-gum-resin. Therefore, this work provided an overview on the antiviral properties of Boswellia species and their potential therapeutic effects in the field of COVID-19 pandemic.


Subject(s)
Boswellia , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Pandemics , SARS-CoV-2
5.
Methods Mol Biol ; 2511: 395-404, 2022.
Article in English | MEDLINE | ID: covidwho-1941392

ABSTRACT

There is still an urgent need to develop effective treatments to help minimize the cases of severe COVID-19. A number of tools have now been developed and applied to address these issues, such as the use of non-contrast chest computed tomography (CT) for evaluation and grading of the associated lung damage. Here we used a deep learning approach for predicting the outcome of 1078 patients admitted into the Baqiyatallah Hospital in Tehran, Iran, suffering from COVID-19 infections in the first wave of the pandemic. These were classified into two groups of non-severe and severe cases according to features on their CT scans with accuracies of approximately 0.90. We suggest that incorporation of molecular and/or clinical features, such as multiplex immunoassay or laboratory findings, will increase accuracy and sensitivity of the model for COVID-19 -related predictions.


Subject(s)
COVID-19 , Deep Learning , COVID-19/diagnostic imaging , Humans , Iran , Lung/diagnostic imaging , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
6.
Methods Mol Biol ; 2511: 333-344, 2022.
Article in English | MEDLINE | ID: covidwho-1941387

ABSTRACT

Infection with SARS-CoV-2, the causative agent of COVID-19, causes numerous cellular dysfunctions. The virus enters the host cells and hijacks the cell machinery for its replication, resulting in disturbances of the oxidative, reductive balance, increased production of damaging reactive oxygen species (ROS), and mitochondrial dysfunction. This damaging cycle can make cells less resistant to infection and make the host more likely to experience a severe disease course. Treatment with antioxidants has been tested as a potential approach to reduce the effects of this disorder. Here, we present a protocol to assess the impact of treatment with a mixture of curcuminoids on physiological and molecular biomarkers, focusing on determining total antioxidant capacity. We used a cohort of diabetes patients with an imbalance in redox mechanisms as such patients are more likely to become severely ill from COVID-19 than healthy persons.


Subject(s)
COVID-19 , Antioxidants/metabolism , Antioxidants/therapeutic use , Humans , Oxidation-Reduction , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , SARS-CoV-2
7.
Methods Mol Biol ; 2511: 285-295, 2022.
Article in English | MEDLINE | ID: covidwho-1941383

ABSTRACT

SARS-CoV-2 can stimulate the expression of various inflammatory cytokines and induce the cytokine storm in COVID-19 patients leading to multiple organ failure and death. Curcumin as a polyphenolic compound has been shown to have anti-inflammatory properties and inhibit the release of numerous pro-inflammatory cytokines. We present multiplex analysis using the Evidence Investigator biochip system to determine the effect of curcumin on serum level of cytokines which are typically elevated in cytokine storm events, including tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and IL-10.


Subject(s)
COVID-19 Drug Treatment , Curcumin , Cytokine Release Syndrome , Curcumin/pharmacology , Curcumin/therapeutic use , Cytokine Release Syndrome/drug therapy , Cytokines , Humans , Protein Array Analysis/methods , SARS-CoV-2
8.
Methods Mol Biol ; 2511: 245-256, 2022.
Article in English | MEDLINE | ID: covidwho-1941380

ABSTRACT

Severe cases of SARS-CoV-2 and other pathogenic virus infections are often associated with the uncontrolled release of proinflammatory cytokines, known as a "cytokine storm." We present a protocol for multiplex analysis of three cytokines, tumor necrosis factor-alpha (TNF-a), interleukin 6 (IL-6), and IL-10, which are typically elevated in cytokine storm events and may be used as a predictive biomarker profile of disease severity or disease course.


Subject(s)
COVID-19 , Cytokine Release Syndrome , COVID-19/diagnosis , Cytokine Release Syndrome/diagnosis , Cytokines , Humans , Immunoassay/methods , SARS-CoV-2 , Severity of Illness Index
9.
J Drug Target ; 30(6): 603-613, 2022 07.
Article in English | MEDLINE | ID: covidwho-1751878

ABSTRACT

COVID-19 has affected the lives of billions of people and is a causative agent for millions of deaths. After 23 months of the first reported case of COVID-19, on 25th November 2020, a new SARS-COVID-19 variant, i.e. Omicron was reported with a WHO tagline of VoC that trembled the world with its infectivity rate. This fifth VoC raised the concern about neutralising ability and adequate control of SARS-COVID-19 infection due to mass vaccination drive (nearly more than 4.7 billion individuals got vaccinated globally till December 2021). However, the present scenario of VoCs highlights the importance of vaccination and public health measures that need to be followed strictly to prevent the fatality from Omicron. The world still needs to overcome the hesitancy that poses a major barrier to the implementation of vaccination. This review highlights the SARS-COVID-19 situation and discusses in detail the mutational events that occurred at a cellular level in different variants over time. This article is dedicated to the scientific findings reported during the recent outbreak of 2019-2022 and describes their symptoms, disease, spread, treatment, and preventive action advised. The article also focuses on the treatment options available for Covid-19 and the update of Omicron by expert agencies.


Subject(s)
COVID-19 , SARS-CoV-2 , Evolution, Molecular , Humans , Mutation , SARS-CoV-2/genetics
10.
J Drug Target ; 30(4): 413-429, 2022 04.
Article in English | MEDLINE | ID: covidwho-1545744

ABSTRACT

COVID-19 is a clinical outcome of viral infection emerged due to strain of beta coronavirus which attacks the type-2 pneumocytes in alveoli via angiotensin-converting enzyme 2 (ACE2) receptors. There is no satisfactory drug developed against 'SARS-CoV2', highlighting an immediate necessity chemotherapeutic repurposing plan COVID-19. Drug repurposing is a method of selection of approved therapeutics for new use and is considered to be the most effective drug finding strategy since it includes less time and cost to obtain treatment compared to the de novo drug acquisition process. Several drugs such as hydroxychloroquine, remdesivir, teicoplanin, darunavir, ritonavir, nitazoxanide, chloroquine, tocilizumab and favipiravir (FPV) showed their activity against 'SARS-CoV2' in vitro. This review has emphasized on repurposing of drugs, and biologics used in clinical set up for targeting COVID-19 and to evaluate their pharmacokinetics, pharmacodynamics and safety with their future aspect. The key benefit of drug repurposing is the wealth of information related to its safety, and easy accessibility. Altogether repurposing approach allows access to regulatory approval as well as reducing sophisticated safety studies.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning/methods , Humans , SARS-CoV-2/drug effects
11.
J Biomater Sci Polym Ed ; 33(1): 110-136, 2022 01.
Article in English | MEDLINE | ID: covidwho-1379399

ABSTRACT

The limited time indorsed to face the COVID-19 emergency and large number of deaths across the globe, poses an unrelenting challenge to find apt therapeutic approaches. However, lead candidate selection to phase III trials of new chemical entity is a time-consuming procedure, and not feasible in pandemic, such as the one we are facing. Drug repositioning, an exploration of existing drug for new therapeutic use, could be an effective alternative as it allows fast-track estimation in phase II-III trials, or even forthright compassionate use. Although, drugs repurposed for COVID-19 pandemic are commercially available, yet the evaluation of their safety and efficacy is tiresome and painstaking. In absence of any specific treatment the easy alternatives such as over the counter products, phytotherapies and home remedies have been largely adopted for prophylaxis and therapy as well. In recent years, it has been demonstrated that several pharmaceutical excipients possess antiviral properties making them prospective candidates against SARS-CoV-2. This review highlights the mechanism of action of various antiviral excipients and their propensity to act against SARs-CoV2. Though, repurposing of pharmaceutical excipients against COVID-19 has the edge over therapeutic agents in terms of safety, cost and fast-track approval trial burdened, this hypothesis needs to be experimentally verified for COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Excipients/pharmacology , Humans , Pandemics , Prospective Studies , RNA, Viral , SARS-CoV-2/drug effects
12.
Pharmacol Rep ; 73(6): 1539-1550, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1281363

ABSTRACT

Angiotensin-converting enzyme (ACE) and its homologue, ACE2, are commonly allied with hypertension, renin-angiotensin-aldosterone system pathway, and other cardiovascular system disorders. The recent pandemic of COVID-19 has attracted the attention of numerous researchers on ACE2 receptors, where the causative viral particle, SARS-CoV-2, is established to exploit these receptors for permitting their entry into the human cells. Therefore, studies on the molecular origin and pathophysiology of the cell response in correlation to the role of ACE2 receptors to these viruses are bringing novel theories. The varying level of manifestation and importance of ACE proteins, underlying irregularities and disorders, intake of specific medications, and persistence of assured genomic variants at the ACE genes are potential questions raising nowadays while observing the marked alteration in response to the SARS-CoV-2-infected patients. Therefore, the present review has focused on several raised opinions associated with the role of the ACE2 receptor and its impact on COVID-19 pathogenesis.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/pathogenicity , Acute Lung Injury , Angiotensin-Converting Enzyme 2/deficiency , Angiotensin-Converting Enzyme 2/therapeutic use , Humans , Hypertension/drug therapy , Spike Glycoprotein, Coronavirus/metabolism
13.
Int J Environ Health Res ; 32(8): 1815-1826, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1196926

ABSTRACT

At the end of 2019 and 2020s, a wave of coronavirus disease 19 (COVID-19) epidemics worldwide has catalyzed a new era of 'communicable infectious diseases'. However, the world is not currently prepared to deal with the growing burden of COVID-19, with the unexpected arrival of Hantavirus infection heading to the next several healthcare emergencies in public. Hantavirus is a significant class of zoonotic pathogens of negative-sense single-stranded ribonucleic acid (RNA). Hemorrhagic renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are the two major clinical manifestations. Till date, there is no effective treatments or vaccines available, public awareness and precautionary measures can help to reduce the spread of hantavirus disease. In this study, we outline the epidemiology, virology, clinical aspects, and existing HFRS and HCPS management approaches. This review will give an understanding of virus-host interactions and will help for the early preparation and effective handling of further outbreaks in an ever-changing environment.


Subject(s)
COVID-19 , Hantavirus Infections , Hemorrhagic Fever with Renal Syndrome , Orthohantavirus , COVID-19/epidemiology , Disease Outbreaks , Orthohantavirus/genetics , Hantavirus Infections/epidemiology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Humans
14.
Front Public Health ; 8: 606129, 2020.
Article in English | MEDLINE | ID: covidwho-1000223

ABSTRACT

Sudden outbreak of a new pathogen in numbers of pneumonic patients in Wuhan province during December 2019 has threatened the world population within a short period of its occurrence. This respiratory tract-isolated pathogen was initially named as novel coronavirus 2019 (nCoV-2019), but later termed as SARS-CoV-2. The rapid spreading of this infectious disease received the label of pandemic by the World Health Organization within 4 months of its occurrence, which still seeks continuous attention of the researchers to prevent the spread and for cure of the infected patients. The propagation of the disease has been recorded in 215 countries, with more than 25.5 million cases and a death toll of more than 0.85 million. Several measures are taken to control the disease transmission, and researchers are actively engaged in finding suitable therapeutics to effectively control the disease to minimize the mortality and morbidity rates. Several existing potential candidates were explored in the prevention and treatment of worsening condition of COVID-19 patients; however, none of the formulation has been approved for the treatment but used under medical supervision. In this article, a focus has been made to highlight on current epidemiology on the COVID-19 infection, clinical features, diagnosis, and transmission, with special emphasis on treatment measures of the disease at different stages of clinical research and the global economic influence due to this pandemic situation. Progress in the development on vaccine against COVID-19 has also been explored as important measures to immunize people. Moreover, this article is expected to provide information to the researchers, who are constantly combating in the management against this outbreak.


Subject(s)
COVID-19 Vaccines , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/transmission , Humans , Personal Protective Equipment , SARS-CoV-2
15.
Respir Med ; 191: 106192, 2022 01.
Article in English | MEDLINE | ID: covidwho-867095

ABSTRACT

In December 2019, when the whole world is waiting for Christmas and New Year, the physicians of Wuhan, China, are astounded by clusters of patients suffering from pneumonia from unknown causes. The pathogen isolated from the respiratory epithelium of the patients is similar to previously known coronaviruses with some distinct features. The disease was initially called nCoV-2019 or SARS-nCoV-2 and later termed as COVID-19 by WHO. The infection is rapidly propagating from the day of emergence, spread throughout the globe and now became a pandemic which challenged the competencies of developed nations in terms of health care management. As per WHO report, 216 countries are affected with SARS-CoV-19 by August 5, 2020 with 18, 142, 718 confirmed cases and 691,013 deaths reports. Such huge mortality and morbidity rates are truly threatening and calls for some aggressive and effective measures to slow down the disease transmission. The scientists are constantly engaged in finding a potential solution to diagnose and treat the pandemic. Various FDA approved drugs with the previous history of antiviral potency are repurposed for COVID-19 treatment. Different drugs and vaccines are under clinical trials and some rapid and effective diagnostic tools are also under development. In this review, we have highlighted the current epidemiology through infographics, disease transmission and progression, clinical features and diagnosis and possible therapeutic approaches for COVID-19. The article mainly focused on the development and possible application of various FDA approved drugs, including chloroquine, remdesivir, favipiravir, nefamostate mesylate, penciclovir, nitazoxanide, ribavirin etc., vaccines under development and various registered clinical trials exploring different therapeutic measures for the treatment of COVID-19. This information will definitely help the researchers to understand the in-line scientific progress by various clinical agencies and regulatory bodies against COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 Vaccines/therapeutic use , COVID-19 , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Testing , Drug Repositioning , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL